Students and faculty in the Department of Electrical, Computer, Software, and Systems Engineering are some of the more prolific researchers in the Embry-Riddle family. The department's research expenditures are nearly one-half those of the entire College of Engineering, with support from federal agencies including NSF, FAA, and NOAA as well as industry partners. The department is heavily involved in projects managed by ERAU's NEAR Lab and by the COE's Eagle Flight Research Center.

Strategic department research directions include three areas critical for the future of aerospace. These are:

  • Detect and avoid technologies for unmanned aircraft systems;
  • Assured systems for aerospace, including cybersecurity and development assurance;
  • Modeling and simulation for aviation and aerospace.

Detect and avoid technologies enable unmanned aircraft systems to "see and be seen" by other aircraft and by air traffic controllers on the ground. Of particular challenge is detect and avoid of uncooperative aircraft, those aircraft that aren't equipped to announce their position either automatically or in response to interrogations from the ground.

Assured systems are those that are robust in the face of cybersecurity challenges, with assured development being system design approaches that yield assured systems without high overhead.

Modeling and simulation for aviation involves everything from the logistics of getting passengers onto aircraft to planning how to get all air traffic around predicted bad weather without upsetting arrival times and locations.

1-10 of 14 results

  • Maritime RobotX Challenge

    PI Eric Coyle

    CO-I Patrick Currier

    CO-I Charles Reinholtz

    CO-I Brian Butka

    The Maritime RobotX Challenge entails the development and demonstration of an autonomous surface vehicle (ASV). Embry-Riddle is one of three U.S. schools selected to compete in the challenge, which is co-sponsored by the Office of Naval Research (ONR) and the Association for Unmanned Vehicle Systems International (AUVSI) Foundation.



    ​The 2014 ERAU platform, named Minion, is a 16-foot fully-autonomous Wave Adaptive Modular Vessel (WAM-V) platform and is registered as an autonomous boat in the state of Florida. Minion's development currently focuses on autonomous tasks of buoy channel navigation, debris avoidance, docking, target identification and sonar localization. To accomplishing these tasks, the team has developed as set of system software nodes including state estimation, object classification, mapping and trajectory planning. These nodes run in parallel across a set of networked computers for distributed processing. Minion's propulsion system is centered around a set rim-driven hubless motors attached to articulated motor pods. This design reduces the risk of entanglement, and provides consistent thrust by maintaining motor depth in rough seas.

    The group is currently developing the 2016 platform for the competition

    Categories: Faculty-Staff

  • Development of Parking Space App

    PI Ilteris Demirkiran

    CO-I Diego Rincon

    The main purpose of this project is to reduce the wait and search time for an individual who is looking to park his or her vehicle at the Embry-Riddle Aeronautical University, Daytona Beach campus. This project is to help in reducing fuel consumption as well as making campus roads safer. An additional benefit is the ability to continuously monitor all parking lots on campus increasing overall campus safety.



    ​Many schools in the United States deal daily with complications associated with parking on campus. Commuters, students and faculty members, travel back and forth causing major traffic within the campus and in some cases, a logistic nightmare. For a university to accommodate all of the vehicles takes countless hours of planning and management. Schools have solved some of these problems by assigning specific parking lots to specific groups of individuals such as on-campus students, commuter students, and faculty. This research proposes a secondary solution to a growing problem. The main goal of this research effort is to reduce the wait and search time spent while looking for an available parking spot on campus. This solution will utilize cameras and advanced image processing algorithms to inform users of an available parking spot in the most efficient way.

    Categories: Undergraduate

  • Peer Review within a Learning Management System (LMS) in a Face-to-Face (F2F) Course

    PI Wendi Kappers

    The purpose of this research study is to investigate student collaboration and the effectiveness of peer review on the part of the reviewer to increase understanding of information literacy. Focus upon the Learning Management System (LMS) to support automation of peer review activities is a secondary purpose.

    This research paper describes the use of peer review to improve information literacy. Peer-reviewed assignments for learning have been seen favorably within the literature. The articulated benefits range from students feeling more engaged, having expressed less anxiety, or found to be better equipped to perform in unfamiliar areas outside their current learning environments. However, minimal research examines the benefits specifically for the feedback provider (reviewer) when a more modern tool, such as the Canvas Learning Management System (LMS) is used. During the fall 2015 semester, a study was conducted to examine the peer review process from the vantage point of the reviewer when mitigated by an LMS. Since peer review is seen as a social activity, this study is guided by a social constructivism teaching framework to investigate peer review activities for (a) linear relationships to that of a perceived social element inclusion, (b) changes in learning from the perspective of the reviewer rather than the receiver of feedback, and (c) improvement in perceived information literacy. Additionally, this research examines Canvas attributes as identified by Sondergaard & Mulder(1) (2012) of (a) Automation, (b) Simplicity, (c) Customizability, and (d) Accessibility, which support statements from the literature that indicate a lack of investigation of more modern peer review tools. Survey results, both qualitative and quantitative, were analyzed across three different peer-reviewed assignments for this examination. Of the 91 respondents, representing a 32 percent response rate, descriptive analysis revealed themes ranging from Changes in Student Efforts to Valued New Perspectives; whereas, expected Active Learning and Social Benefits slightly contradicted the positive tone that was originally found in the thematic review. Overwhelming positive ratings were collected regarding the use of the LMS to support and implement a peer-reviewed assignment. Perceived affects upon the peer reviewer, and how these types of assignments can support the proposed Accreditation Board for Engineering and Technology, Inc. (ABET) General Criterion 3 Student Outcomes and General Criterion 5 Curriculum currently under revision are discussed. Lastly, these data are represented for use as an evaluation baseline for future planned investigations and for other faculty and course developers, who are considering implementation of peer-reviewed activities within first-year program courses

    Categories: Faculty-Staff

  • Improving Air Mobility in Emergency Situations

    PI Houbing Song



    Categories: Faculty-Staff

  • NSF REU Site: Swarms of Unmanned Aircraft Systems in the Age of AI/Machine Learning

    PI Houbing Song

    CO-I Richard Stansbury

    Embry-Riddle Aeronautical University establishes a new Research Experiences for Undergraduates (REU) Site to engage participants in research in drone swarms. The emerging concept of drone swarms, which is defined as the ability of drones to autonomously make decisions based on shared information, creates new opportunities with major societal implications. However, future drone swarm applications and services pose new networking challenges. A resurgence of Artificial Intelligence and machine learning research presents a tremendous opportunity for addressing these networking challenges. There is an overwhelming need to foster a robust workforce with competencies to enable future drone swarm applications and services in the age of AI/machine learning.

    The project establishes a new Research Experiences for Undergraduates (REU) Site with a focus on networking research for drone swarms in the age of AI/machine learning at Embry-Riddle Aeronautical University. The goals of the REU Site are: (1) attract undergraduate students to state-of-the-art drone swarm research, especially those from underrepresented groups, and from institutions with limited opportunities; (2) develop the research capacity of participants by guiding them to perform research on drone swarms; (3) grow the participants’ technical skills to enable a wide variety of beneficial applications of drone swarms; (4) promote the participants’ integrated AI/machine learning and drone swarm competencies; and (5) prepare participants with professional skills for careers. The focus of the REU Site is on the design, analysis and evaluation of innovative computing and networking technologies for future drone swarm applications and services. To be specific, research activities will be conducted in three focus areas, notably dynamic network management, network protocol design, and operationalizing AI/machine learning for drone swarms. Each year eight undergraduate students will participate in a ten-week summer REU program to perform networking research for drone swarms under the guidance of research mentors with rich experiences in AI/machine learning and drone swarms. This REU site is expected to foster workforce knowledge and skills about developing new computing and networking technologies for future drone swarm applications and services. This site is supported by the Department of Defense ASSURE program in partnership with the NSF REU program.

    Categories: Faculty-Staff

  • A Curriculum Wide Software Development Case Study

    PI Massood Towhidnejad

    CO-I Thomas Hilburn

    This NSF funded research develops case studies of software development for use in software engineering and computing instruction.

    Products include realistic projects, complete artifacts throughout the software development life cycle, case studies decoupled from a particular textbook, and case modules designed with varying complexity allowing for use in multiple classes throughout undergraduate and graduate curricula. 

    Categories: Faculty-Staff

  • Encouraging Students to Pursue an Engineering Education and Career

    PI Massood Towhidnejad

    This NSF-sponsored project provides scholarship for engineering students pursuing degrees in computer science, computer engineering, electrical engineering, mechanical engineering and software engineering.

    Working closely with faculty and student mentors, scholarship recipients are involved in multi-disciplinary projects involving unmanned and autonomous systems throughout their four years of undergraduate study.

    Categories: Faculty-Staff

1-10 of 14 results