Students and faculty in the Department of Electrical, Computer, Software, and Systems Engineering are some of the more prolific researchers in the Embry-Riddle family. The department's research expenditures are nearly one-half those of the entire College of Engineering, with support from federal agencies including NSF, FAA, and NOAA as well as industry partners. The department is heavily involved in projects managed by ERAU's NEAR Lab and by the COE's Eagle Flight Research Center.
Strategic department research directions include three areas critical for the future of aerospace. These are:
- Detect and avoid technologies for unmanned aircraft systems;
- Assured systems for aerospace, including cybersecurity and development assurance;
- Modeling and simulation for aviation and aerospace.
Detect and avoid technologies enable unmanned aircraft systems to "see and be seen" by other aircraft and by air traffic controllers on the ground. Of particular challenge is detect and avoid of uncooperative aircraft, those aircraft that aren't equipped to announce their position either automatically or in response to interrogations from the ground.
Assured systems are those that are robust in the face of cybersecurity challenges, with assured development being system design approaches that yield assured systems without high overhead.
Modeling and simulation for aviation involves everything from the logistics of getting passengers onto aircraft to planning how to get all air traffic around predicted bad weather without upsetting arrival times and locations.
NSF REU Site: Cybersecurity Research of Unmanned Aerial Vehicles
PI Laxima Niure Kandel
This funding institutes a Research Experience for Undergraduates (REU) Site at Embry-Riddle Aeronautical University (ERAU). Each year, over the summer, ten highly motivated undergraduates will conduct an intense 10-week Unmanned Aerial Vehicles (UAV) cybersecurity research program complemented by professional development activities that prepare them for future cybersecurity careers and graduate schools.
This funding institutes a Research Experience for Undergraduates (REU) Site at Embry-Riddle Aeronautical University (ERAU). Each year, over the summer, ten highly motivated undergraduates will conduct an intense 10-week Unmanned Aerial Vehicles (UAV) cybersecurity research program complemented by professional development activities that prepare them for future cybersecurity careers and graduate schools. Students will research existing UAV cyber threats and mitigation strategies and explore new techniques and algorithms to safeguard UAV systems. The REU program will focus on providing unparalleled opportunities for undergraduate students, especially those from underrepresented and minority groups and from institutions with limited resources, by engaging them in real-world cybersecurity research of UAVs. Through small-group, high-quality mentoring practices, the REU training will not only aid in enhancing the safety and security of UAVs in personal and commercial applications but will also build research confidence among REU participants.
The overall objective of this project is to immerse undergraduate students in research-intensive training in the cybersecurity field and encourage them to think creatively and independently through hands-on project activities. REU participants will be engaged in faculty-led projects such as UAV cyber-attacks, UAV cyber defense mechanisms, privacy protection methods for UAV communications, and Physical Layer-based cybersecurity. They will participate in activities that range from literature reviews, technical seminars, and workshops to the preparation, presentation, and dissemination of research findings. The three major goals of the REU Site are: (1) to expose undergraduate students to a variety of cybersecurity projects that are bound to build the interest, skills, and knowledge necessary to pursue cybersecurity careers; (2) to increase the number of underrepresented undergraduates in cybersecurity and STEM fields through diversity recruitment emphasis, and (3) to provide undergraduate students with strong professional skills for their future careers and graduate schools. The REU Site will leverage ERAUs? state-of-the-art facilities, research labs, and faculty expertise to promote interest in cybersecurity and develop research skills of the undergraduate students which, in turn, will contribute towards cybersecurity education, training, and workforce development.