21-30 of 34 results

  • NASA’s Embry-Riddle High-Altitude Science Experiment Rig (ERHASER)

    PI Pedro LLanos

    CO-I Sathya Gangadharan

    The purpose of this study aboard the NASA’s Airborne Science Program WB-57 aircraft was to assess the effect of radiation on murine naïve and activated T lymphocytes (T cells) and to test the effectiveness of thermal, radiation and flight tracking technology in biological scientific payloads. Flight cells were kept under proper environmental conditions by using an active thermal system, whereas the levels of radiation were measured by NASA’s Timepix radiation sensor during ascent, cruise at 60,000 feet, and descent.

    Exposure to space radiation may place astronauts at significant health risks. This is an under-investigated area of research and therefore more knowledge is needed to better plan long-term space missions. We cultured cells in specific cytokines known to increase their viability and exposed them to either flight or had them as ground controls. In addition, an Automatic Dependent Surveillance-Broadcast (ADS-B) device was utilized to track the state vector of the aircraft during flight. The aims of this pilot research study were:

    Aim 1: The first aim was to study the position of the aircraft using the ADS-B device for subsonic or supersonic flights through triangulation from communication nodes along the Gulf of Mexico, which had never done before. We aimed to get insights into some challenges the Federal Administration Aviation (FAA) is facing with integrating the newly emerging era of suborbital space vehicles into the National Air Space.

    Aim 2: The second objective was to test the effects of radiation using the Timepix, a sensor that had flown on NASA’s Exploration Flight Test (EFT)-1 On December 5, 2014, and that had never flown before aboard this aircraft to study the radiation levels at 60,000 ft.

    Aim 3: Next, we wanted to assess the radiation levels on the immune cells, also called T cells. We used both naïve and activated murine T cells, which were supplemented with cytokines IL-2 and IL-12, as well as treated with the novel supercritical CO2 extract of neem tree Azadirachta indica (SCNE). Interleukin-2 (IL-2) is a potent T cell growth factor used for T cell expansion and treatment of several types of cancer [23]. IL-12 is involved in the differentiation of naive T cells into the T helper cells. It is also known as a T cell-stimulating factor, and a promising agent in cancer immunotherapy [24]. These two cytokines facilitate their effect by targeting the immune system. We sought to investigate whether exposure to radiation and other flight stressors would have any effect on these cells, especially at the 60,000 feet, where peak galactic cosmic rays (GCR) scattering of secondary particles occurs. Given the cytokines' ability to alter the cellular processes and the role of supercritical extract as the natural compound with pluripotent properties, we wanted to test whether supplementing cells with these additives would rescue the cells of radiation damage. We performed the phenotypic analysis of the cells and assessed their ability to release cytokines.

    Aim 4: The fourth objective included the development of an Environment Control Life Support System (ECLSS) NanoLab, which could be used to host and sustain the cells at the desired temperature while other variables are being tested.

    Below: Timeline of the airborne research experiment.

    Below left: Temperature profile during flight. Below right: Total radiation dose during flight.

    Below: Example of effects of flight on the expression of cytokines of T cells and Naïve cells.

    Below: ERAU team picture at NASA’s Ellington Field, Houston, Texas, 2019.

    Categories: Faculty-Staff

  • Environmental Analysis of Convective Initiation Events in Central Florida using Integrated Mobile Observation

    PI Shawn Milrad

    PI Daniel Halperin

    This research collaboration with the National Weather Service (NWS) Weather Forecast Office Tampa Bay aims to develop an ingredients-based methodology to help improve forecasts of first-strike cloud-to-ground lightning strikes in summer thunderstorms across Central Florida. Results will be used to construct a new forecast tool that will aid NWS forecasters in protecting the region’s life and property from these dangerous lightning events.

    Lightning is a major hazard to life and property in Florida and annually leads the nation in lightning strikes and fatalities. The proposed research collaboration with the National Weather Service (NWS) Weather Forecast Office Tampa Bay aims to develop an ingredients-based methodology to help forecast first strike cloud-to-ground lightning strikes in warm-season thunderstorms across Central Florida. A comprehensive environmental analysis of these convective initiation events is being performed using numerous observational datasets, including mobile radar and surface observations from recent ERAU field courses and campaigns. The environmental analysis will examine first-strike events across the eight large-scale flow regimes previously identified by NWS Tampa Bay. A particular focus is placed on events that occurred during four weeks of ERAU field courses/campaigns in 2015 and 2018, allowing for the unique integration of mobile observations. Results are being used to construct a new forecast tool integrated with existing radar- and satellite-based lightning tools, to improve first-strike alert lead times. Also, the proposed project has established a fruitful collaborative research relationship between ERAU and NWS Tampa Bay while providing research experience and training for several ERAU undergraduate meteorology majors. These undergraduate students have completed much of the work on the project and have gotten to interact with NWS Tampa Bay personnel. It is expected that this project will also stimulate future more significant research collaborations between ERAU Meteorology and regional NWS forecast offices.

    Categories: Faculty-Staff

  • Deep-Learning-Based Unobtrusive Estimation of Pilot Adverse Interactions and Loss of Energy State Awareness

    PI Hever Moncayo

    ​This project aimed at gaining more insight into the mechanisms of pilot SD and LESA occurrence, capturing their dynamic fingerprint, and developing on-board intelligent schemes capable of predicting and detecting these dangerous phenomena associated to pilot behaviors. 

    Findings: Final report submitted 9/24. Each of the mathematical models showed good capabilities of estimating each of the pilot parameters and represent a promising tool towards the characterization of pilot behavior using learning components. Continuation can be pursued by generalizing or extending the proposed results to other aircraft-pilot dynamics, possibly eVTOLs for AAM.

    Student and Curriculum impact. The simulation and testing tools will be integrated as part of the experiential learning of the course AE623 Guidance, Navigation and Control that will be taught by the PI next Fall 2025. The proposed technique also allowed a master student in Aerospace Engineering to complement and enhance her thesis outcomes.

    Scholarly products: NASA ULI submission, NSF Dynamics Control and Systems

    • Brutch, T. Schill, and H. Moncayo, Machine learning approach to estimation of human-pilot model parameters, in Guidance Navigation and Control Architectures for Autonomous Systems III, AIAA SciTech 2024 Forum, 2024-1200 (AIAA, Orlando, FL, 2024).
    • S. Brutch and H. Moncayo, Performance analysis of machine learning algorithms to humanpilot-model parameter estimation, in IS-30, Human - Automation Interaction, Accepted for presentation in AIAA SciTech 2025 Forum (AIAA, Orlando, FL, 2025).
    • S. Brutch, Rocio. Jado-Puente, and H. Moncayo, A physics-informed deep learning model for estimating human pilot behavior and mitigating adverse interactions, in Guidance Navigation and Control Architectures for Autonomous Systems III, AIAA SciTech 2024 Forum, 2024-1200

    Categories: Faculty-Staff

  • Transfer and Retention of Training in Real and Virtual Spaceflight Environments

    PI Erik Seedhouse

    This research compared how effectively suborbital tasks are learned in an actual NBE compared with a VR-rendered NBE. This study demonstrated the efficacy of NBE-type training as a means to improve the effectiveness of training suborbital SFPs. 



    ​Manned suborbital spaceflights are just around the corner. SpaceShipTwo, operated by Virgin Galactic and New Shepard, operated by Blue Origin, will most likely fly fare-paying passengers sometime in 2020. Each passenger will pay $250,000. And, with just four minutes (240 seconds) of actual microgravity time, that equates to almost $1000/second. For spaceflight participants (SFPs) a category which will include tourists and scientists, the cost of incorrectly performing even simple tasks will be extremely costly.

    In spaceflight, even for highly trained astronauts, the tactile-kinesthetic and vestibular systems are affected by weightlessness. Of course, astronauts traveling to the International Space Station (ISS) have plenty of time to adapt, but SFPs will have no time at all – the time from rocket ignition to microgravity is less than 5 minutes. Compounding this lack of adaptation is the fact that suborbital SFPs will generally only have 3 days of training (compared with many years of training for an astronaut headed to the ISS).  To overcome the aforementioned difficulties this study evaluated two spaceflight analogous training systems specific to suborbital spaceflight: one that will take place in an actual neutral buoyancy environment (NBE) and one that will take place in a virtual reality (VR) NBE. 

    To date, there have no studies that have evaluated the effectiveness of VR as a means of training suborbital SFPs. Nor have there been any studies that evaluate the utility of NBE-type training for suborbital SFPs. Not only did this study assess the effectiveness of each of these methods of training. It also developed a training tool for the commercial suborbital spaceflight industry. To that end, this study sought to achieve three objectives:  

    1. Measure the effectiveness of neutral buoyancy dive training while wearing the EasyDive system as a means to train suborbital SFPs in a swimming pool 
    2. Measure the effectiveness of neutral buoyancy dive training in an underwater-simulated VR environment as a means of improving maneuvering and performance of tasks in microgravity.  
    3. Based on the results of objectives #1 and #2 a training program for SFPs will be devised. 

    Categories: Faculty-Staff

  • Big Data Analytics for Injury Data

    PI Dothang Truong

    This project leverages big data analytics tools for the exploration and transformation of injury data for a major Part 121 carrier with the goal of predictive modeling. This project offers graduate students an opportunity to work with a substantial airline dataset under the supervision of a faculty member. The outcomes have the potential to lead to more extensive future projects in the realm of big data analytics. (This project is under strict NDA).


    Categories: Faculty-Staff

  • LATAM Project

    PI Dothang Truong



    Categories: Faculty-Staff

  • Small UAS (sUAS) Mid-Air Collision (MAC) Likelihood

    PI Ryan Wallace

    CO-I Dothang Truong

    CO-I Scott Winter

    CO-I David Cross

    This research focuses on sUAS MAC likelihood analysis with general aviation (GA) and commercial aircraft. Because severity research varies based on where a collision occurred on a manned aircraft, this likelihood research will not only look at the probability of a MAC, but also the likelihood of colliding with different parts of a manned aircraft.

    Complete Mid-Air Collision (MAC) risk assessments require estimates of both collision severity and collision likelihood. This research focuses on sUAS MAC likelihood analysis with General Aviation (GA) and commercial aircraft. Because severity research varies based on where a collision occurred on a manned aircraft, this likelihood research will not only look at the probability of MAC but also the likelihood of colliding with different parts of a manned aircraft.

    Categories: Faculty-Staff

  • Usability of Urban Air Mobility: Quantitative and Qualitative Assessments of Usage in Emergency Situations

    PI Scott Winter

    CO-I Stephen Rice

    CO-I Sean Crouse

    ​The purpose of these studies is to determine the usability of urban air mobility (UAM) vehicles in the emergency response to natural disasters and the ideal locations for their take-off and landing sites to occur, consistent with the Center's Theme 2. UAM involves aerial vehicles, mostly operated autonomously, which can complete short flights around urban areas, although their applications are expanding to rural operations as well. While initially designed to support advanced transportation mobility, these vehicles could offer numerous advantages in the emergency response to natural disasters. Through a series of four studies with over 2,000 total participants, quantitative and qualitative methods will be used to identify UAM vehicles' usability in response to natural disasters. The studies will examine the types of natural disasters and types of missions where UAM could be considered usable, along with the creation of a valid scale to determine vertiport usability. Interviews will also be conducted to provide qualitative insights to complement the quantitative findings.

    ​In this proposed series of four studies, our overall purpose will be to determine the usability of urban air mobility in the emergency response to natural disasters. As the concepts of urban air mobility move closer to reality, these mostly autonomous aerial vehicles may provide valuable contributions to our response after natural disasters. However, little prior research has examined the types of natural disasters, types of missions, or locations where UAM could be deployed in the emergency response. The first objective of this research will be to assess the usability of UAM based on the type of natural disaster and type of mission. Following this, the research will develop a valid scale to measure possible locations where UAM operations could be conducted following a natural disaster, such as city parks, building rooftops, or existing helipads. The final objective of this study will be to gather qualitative data through interviews to complement the quantitative findings and offer more significant insights and explanations as to the usability of UAM in response to natural disasters.

    Categories: Faculty-Staff

21-30 of 34 results