Integrated Communication and Environmental Sensing for Safety-Critical Autonomous Systems
PI Thomas Yang
PI Siyao Li
Current communication networks with transmitter/receiver nodes can provide large-scale area coverage and robust interconnection between nodes. This allows for the seamless integration of sensing functions into the existing communication framework, paving the way for Integrated Communication and Sensing (ICAS). Unlike previous generations that treated communication and sensing separately, ICAS eliminates the need for additional hardware, extra transmit power, or dedicated frequency bands, by enabling communication signals to support data transmission and environmental sensing simultaneously. This convergence makes ICAS a key feature of six-generation (6G) communication and enables advanced applications, including Unmanned Aerial Vehicle (UAV) missions, autonomous driving, surveillance, and smart cities, to be powered by a single transmitted signal.
This project aims to develop a novel ICAS framework tailored specifically for autonomous systems operating in safety-critical environments. The primary focus is enabling environment sensing by systematically analyzing the received information-carrying communication signals, through line-of-sight and/or reflected and scattered paths.