11-20 of 35 results

  • Hazard Detection and Avoidance for Lunar Landing

    PI Troy Henderson

    This project develops and demonstrates algorithms for detecting and avoiding areas of large rocks and high slopes for a lunar lander

    This project, funded by Intuitive Machines, develops and demonstrates algorithms for detecting and avoiding areas of large rocks and high slopes for a lunar lander. Preliminary work uses an optical camera and future work will include a lidar sensor. These algorithms will be tested in simulation, tested in laboratory experiments and demonstrated on a lunar lander flight mission.

    Categories: Faculty-Staff

  • Improved Image Processing for Orbit Estimation

    PI Troy Henderson

    This project seeks to improve orbit estimation methods using advanced image processing techniques applied to images from ground and space-based telescopes.

    This project, funded by Air Force Research Laboratory, seeks to improve orbit estimation methods using advanced image processing techniques applied to images from ground and space-based telescopes. Additional work uses RF signals to estimate orbits of transmitting spacecraft.

    Categories: Faculty-Staff

  • Integrated Structural Health Sensors for Inflatable Space Habitats

    PI Dae Won Kim

    PI Sirish Namilae

    Under this research project we will develop an innovative structural health monitoring system for inflatable space habitat structures by integrating nanocomposite piezoresistive sensors 

    Inflatable structures for space habitats are highly prone to damage caused by micrometeoroid and orbital debris impacts. Although the structures are effectively shielded against these impacts through multiple layers of impact resistant materials, there is a necessity for a health monitoring system to monitor the structural integrity and damage state within the structures. Assessment of damage is critical for the safety of personnel in the habitat, as well as predicting the repair needs and the remaining useful life of the habitat. We are developing a unique impact detection and health monitoring system based on hybrid nanocomposite sensors composed of carbon nanotube sheet and coarse graphene platelets. An array of these sensors sandwiched between soft good layers in a space habitat can act as a damage detection layer for inflatable structures. We will further develop algorithms to determine the event of impact, its severity, and location on the sensing layer for active health monitoring.  Our sensor system will be tested in the hypervelocity impact testing facility at UDRI in future.

    Categories: Faculty-Staff

  • Vertical Lift Research Center of Excellence (VLRCOE)

    PI John Leishman

    CO-I Ebenezer Gnanamanickam

    CO-I Kaijus Henri Palm

    CO-I Guillermo Mazzilli

    Ship airwakes are the unsteady turbulent flows that are generated by the earths atmospheric boundary layer (the wind colloquially) blowing over a ship. These flow fields are highly turbulent, not easy to predict and couple with a similar wake flow field generated by a rotorcraft operating close the the ship. This coupling as expected is extremely difficult to predict let along faithfully simulate in a flight simulator. This coupling can have catastrophic consequences for the operation or rotorcraft operating in the vicinity of Naval ships.

    Ship airwakes are the unsteady turbulent flows that are generated by the earths atmospheric boundary layer (the wind colloquially) blowing over a ship. These flow fields are highly turbulent, not easy to predict and couple with a similar wake flow field generated by a rotorcraft operating close the the ship. This coupling as expected is extremely difficult to predict let along faithfully simulate in a flight simulator. This coupling can have catastrophic consequences for the operation or rotorcraft operating in the vicinity of Naval ships.

    While ship airwakes have now been studied for several decades, there remain many unanswered questions and associated challenges in understanding these unsteady, three-dimensional flows, particularly concerning their turbulence characteristics and how flow scales in the airwake can potentially couple with those of a rotorcraft, including Unoccupied Aerial Systems (UAS). Navy personnel and aircraft safety remain the primary motivating factor for understanding the airwake and the interactions so produced. In this regard, developing a versatile, high-fidelity mathematical model to represent the ship airwake in a flight simulation, such as using a reduced-order mathematical representation, remains a priority for the technical community. This goal is particularly critical for more contemporary ship shapes typical of the current Navy inventory. It is toward this end that the fluid dynamic studies of the airwake are addressed in this proposed task. Furthermore, a vast majority of ship airwake measurements have not considered the interactions between an operating rotor(craft) and the airwake, another challenge the proposed task will address.

    Overall, the mean flow features of the ship airwake are currently reasonably well characterized, at least for simplified ship superstructures such as the SFS2. However, much of the combined spatio-temporal behavior of the ship airwake, in general, has not been measured and so the physics are still poorly understood, particularly for contemporary Navy ship shapes. Organized turbulence structures, their distribution of energy across different scales, and their interactions with, or influence on, or criticality for, a traditional rotorcraft or less conventional UAS are not understood or sufficiently documented so far. The recent time-resolved airwake measurements of the current PIs have better established the true three-dimensional nature of the ship airwake, along with other turbulent aspects of the flow that have not been previously documented. These features include the high degree of intermittency, the bistable nature of the airwake, etc. These recent measurements have highlighted the predominance of low frequencies in the airwake, but not exclusively so. They indicate the likelihood of coupling with the response of any rotor system, large or small These new measurements have emphasized the need for spatially and temporally resolved high-frequency flow measurements that capture the true three-dimensionality of the airwake flow and its turbulent aspects, including intermittency. In addition, parsing these measurements into low-order mathematical models (such as for use in FlightLab or similar) remains a challenge, both in the context of understanding the flow physics and developing a higher-fidelity representation of the airwake for use in piloted simulations. Furthermore, the challenge of measuring, understanding, and representing the interactions between the airwake and a rotor system still remains to be studied at the fidelity needed if faithful models of the airwake are to be realized.

    Technical Objectives (ERAU tasks only):

    1) With the focus on faithfully capturing the three-dimensionality of the flow and its turbulent aspects (such as the frequency content and intermittency), time-resolved particle image velocimetry (TR-PIV) measurements with high spatio-temporal resolution will be conducted. These measurements are proposed for a more relevant ship geometry, namely the NATO Generic Destroyer (GD) of NATO AVT-315, while also investigating the differences to the widely used SFS2. Also, a representative rotor system will be introduced into the airwake to study the interactions therein. ERAU will use their new subsonic 4x6 ft wind tunnel with a mostly glass test section and the large field of view TR-PIV system awarded under an ONR DURIP. The focus will be on carrying out dual-plane, time-resolved stereo PIV (DPTR-sPIV) measurements, which allow for spatially and temporally synchronous measurements.

    2) These datasets will then be used to represent the flow field using reduced-order models (ROMs). The advantages of methods such as wavelets, spectral POD (sPOD), Multi-scale Proper Orthogonal Decomposition (mPOD), and probabilistic/statistics techniques, will be used to acquire physical insights into the complex airwake environment, while describing the flow in a manner that is more relevant to the scales of UAS. This proposed approach will also offer new quantitative metrics for comparing airwakes, sorted into frequencies, which quantitatively reflect the energy distributions, and so they are much more suitable for V&V. ROMs can then be constructed, and flow field physics and interactions can be examined at each scale, whose contours should be comparable across all frequencies.

    Categories: Faculty-Staff

  • REU Site: Exploring Aerospace Research at the Intersection of Mechanics, Materials Science, and Aerospace Physiology

    PI Foram Madiyar

    CO-I Alberto Mello

    This Project is founded by National Science Foundation, under REU site. This project aims to educate students and promote scientific research in materials and aerospace science that encompasses not only building lighter and smarter materials for aerospace applications but also understanding the impact of the space environment on physiological and biological changes.

    This Site will focus on multidisciplinary research in aerospace engineering, chemistry, and applied space biology with a goal of improving future space materials science and human diagnostic technology by exposing students to the challenges in these areas and the research going on to solve them. Undergraduate students for a ten-week summer will be recruited for the program. The student recruitment will start in Nov 2021 and the first summer research will be held in the period of May 16 to July 18, 2022.

    The ERAU-REU program is dedicated to the ideals of diversity, equity, accessibility, and inclusion and we ensure a safe and comfortable environment for all scholars.  Please contact us if you have any questions or concerns about the housing accommodations or other aspects of the program.

    Students from underrepresented groups in the sciences, veterans, disabled, or are early in their undergraduate coursework (rising sophomores or juniors) are especially encouraged to apply.


    Research Areas:

    1 - Additive Manufacturing of Shape-Stabilized Phase-Change Materials (PCMs)

    Mentor: Prof. Sandra Boetcher (https://faculty.erau.edu/Sandra.Boetcher)

    The goal of the proposed research is to manufacture shape-stabilized PCMs via additive manufacturing.

    2 - Space Radiation: Study of Intracellular Reactive Oxygen Species

    Mentor: Prof. Hugo Castillo (https://faculty.erau.edu/Hugo.Castillo)

    The goal of this project is to produce a standardized technique to measure the intracellular concentration of ROS in different species of bacteria and yeast, in relation to chronic exposure to sub-lethal doses of ionizing radiation using a low-dose gamma irradiator allowing to quantify the oxidative stress status of the cell concerning DNA damage.

    3 - Investigating Micro- and Nano-Plastics in the Confined Environment of Space Flight.

    Mentor: Prof. Marwa El-Sayed (https://faculty.erau.edu/Marwa.ElSayed)

    The proposed study aims to characterize atmospheric MNP in indoor environments. The goals of the study are 1) identification of the sizes, shapes and size distribution of MNP in the atmosphere, 2) characterization of the chemical composition of atmospheric MNP, 3) determination of the degradation processes and 4) identification of the health issues associated with these particles.

    4 - Investigation of Space Biomechanics and Additive Manufacturing of the Orthopedics

    Mentor: Prof. Victor Huayamave (https://faculty.erau.edu/Victor.Huayamave)

    The participants will learn about (1) current state of space biomechanics research, (2) segmenting anatomical images to develop finite element models, and (3) 3D printed components using additive manufacturing. The computational pipeline will be introduced to the predictive power of the FEM to assess the structural integrity of the hip joint under microgravity conditions.

    5 - Fabrication of a Flexible, Stretchable, and Self-Healable Platform for Aerospace Applications

    Mentors: Prof. Foram Madiyar, Prof. Daewon Kim (https://faculty.erau.edu/Foram.Madiyar, https://faculty.erau.edu/DaeWon.Kim)

    The goal of this project is to investigate the use of polymers not only having tunable electrical and thermal properties, but also reversible bond chemistry that imparts materials high stretchability, exceptional toughness, and self-healability.

    6 - On-Site Biomarker Sensing using Flexible Transistors on Skin

    Mentor: Prof. Foram Madiyar (https://faculty.erau.edu/Foram.Madiyar)

    The goal of the project is to design a wearable technology for the real-time screening, diagnosis and multiplex detection of different biomarkers.

    7 - Biofidelic Piezoresistive Nanocomposite Multiscale Analysis

    Mentor: Prof. Sirish Namilae (https://faculty.erau.edu/Sirish.Namilae)

    In the proposed research, we will further engineer the electro-mechanical response of the structure through (a) varying the constituents in the silicone matrix and (b) engineering the interface mechanical properties in the core layer.

    8 – Fractography using Scanning Electron Microscopy

    Prof. Alberto Mello (https://faculty.erau.edu/Alberto.Mello)

    This research aims to cover scanning electron microscope (SEM) operation, including energy dispersive spectroscopy (EDS) and stress analysis. The student will cut and prepare fractured specimens, observe the crack surface under SEM to identify the local pit formation at the plate edge, find the point of crack initiation, and determine the propagation path.

    9 - Investigation of Photoresponsive and Thermally Stable Monomeric Structures for Space Applications

    Mentor Prof. Javier Santos (https://faculty.erau.edu/Javier.SantosPerez)

    The goal of the project is to investigate the photoresponsive and thermally stable monomeric structures to sense damage, fractures, and changes to space infrastructures.

    10 - Investigating Methods to Minimize the Gap between Pre and Post-Space Flight Syndrome

    Mentor: Prof. Christine Walck (https://faculty.erau.edu/Christine.Walck)

    We propose to design an optimized lower extremity force acquisition system (LEFAS) that integrates with a lower-body negative pressure (LBNP) box and subject-specific protocols for improved fitness results by taking a computationally simulated optimization approach. 

    Categories: Faculty-Staff

  • JET-AIRFRAME INTERACTIONS FOR NOISE SUPPRESSION

    PI Reda Mankbadi



    JET-AIRFRAME INTERACTIONS FOR NOISE SUPPRESSION

    The Embry-Riddle team developed a passive noise suppression technology utilizing the interactions of the airframe with the jet plume. In this technology, the flat surface of the airframe adjacent to the jet plume is modified to create a slightly wavy surface instead. Such design modification can be applied to the existing design concepts with engine mounted under the wing, as well as, the top-mounted engine configurations.

    The near-field perturbations are reflected by the wavy surface to create an excitation wave to amplify the jet and the shear layer instability. The wavy-surface parameters are designed such that the excitation frequency is the harmonic of the fundamental frequency responsible for the peak noise. Through nonlinear fundamental-subharmonic interaction, the sound source and its radiated far-field noise are reduced. 

    To verify this concept, high-fidelity simulations of a supersonic rectangular jet in the vicinity of the airframe surface were carried out. Results show that when the flat airframe surface is reduced by a wavy one, the radiated sound was reduced by 3.7dB for top-mounted engine, and by 2.6dB  for under-airframe engine.

    Implemntation of wavy surface design to suppress jet-surface interaction noise.

    (Left) Top-mounted engine configuration, (Right) Conventional enginr-under airframe design



    Acoustic spectra at the far-field observer 42 diameters away from the nozzle exit

     (Left) Engine mounted on top of airframe, (Right) Engine mounted under the wing


    Categories: Faculty-Staff

  • Fundamental Experimental and Numerical Combustion Study of H2 Containing Fuels for Gas Turbines

    PI Scott Martin

    This project is a University Turbine Systems research grant funded by the Department of Energy.  In collaboration with the University of Central Florida, Purdue University and the University of New Mexico, Embry‑Riddle will develop fundamental data and modeling of H2 and NH3 fuels for gas turbine power plants.



    Categories: Faculty-Staff

  • Human Factors Awareness Training for FAA Aviation Safety Specialists Within Aircraft Certification and FAA Flight Standards

    PI Scott Martin

    In this project, which is funded by the FAA, Embry‑Riddle and Kent University will develop training for individuals within the FAA’s Aviation Safety Flight Standards Service who have expertise and job responsibilities related to the evaluation of aircraft systems design, maintenance, operations, procedures and pilot performance.



    Categories: Faculty-Staff

  • Modeling Plume Afterburning Shutdown With a Double-Conditioned CMC

    PI Scott Martin

    ​This project will develop the double conditioned Conditional Moment Closure (CMC) turbulent combustion model for afterburning shutdown of hypersonic rocket exhaust plumes.

    ​This is an Army Sequential Phase II STTR program in collaboration with Reaction Systems Inc., University of Central Florida and Propulsion Systems Inc.  This project will develop the double conditioned Conditional Moment Closure (CMC) turbulent combustion model for afterburning shutdown of hypersonic rocket exhaust plumes.

    Categories: Faculty-Staff

  • Seaplane design analysis: Focus on structure factor optimization

    PI Alberto Mello

    CO-I Soham Bahulekar

    CO-I Sergio Butkewitshch

    CO-I Wesley Queiroz

    In this work, a design optimization is being investigated considering possible hydrodynamic and structural advantages aiming to reduce the structure weight factor, with a trade-off between fluid dynamics and structural aspects.

    Seaplanes are known to have mandatory design characteristics that lead to disadvantages in comparison to landplanes what limit their use as regular passenger commuters. The main design points to consider are that seaplanes have higher structure weight factor due to hull with its specific shape that creates higher drag than the fuselage of a landplane. They also have higher trim drag because of the need of placing the propellers far from the water surface. All these drawbacks reduce payload capability of seaplanes. In this work, a design optimization will be investigated considering possible hydrodynamic and structural advantages aiming to reduce the structure weight factor, with a trade-off between fluid dynamics and structural aspects, increasing payload capability. An optimized structure may lead to a more effective use of seaplanes as cargo or passenger commuters. A SEAMAX M-22 currently being assembled in the ERAU Research Park hangar will be used for result comparisons.

    Categories: Graduate

11-20 of 35 results