11-14 of 14 results

  • Multiscale Computational and Experimental Framework to Elucidate the Biomechanics of Infant Growth

    PI Victor Huayamave

    There is currently a lack of biomechanical quantification of growth and development because: (1) there is no generic musculoskeletal infant model, and (2) the lack of infant data in the literature.

    There is currently a lack of biomechanical quantification of growth and development because: (1) there is no generic musculoskeletal infant model, and (2) the lack of infant data in the literature. An infant’s spontaneous movements generate forces that are constantly acting on the joints and can affect the morphology and development of soft bone. Using experimental motion capture data, statistical shape modeling, and multi-scale musculoskeletal mechanobiological models, we will be able to predict the complex adaptation of the joint to biomechanical factors, thus providing a biomechanical basis for improved prevention and treatment of developmental disorders. This project pioneers the development of solutions that improve intervention and outcomes of conditions such as scoliosis, spina bifida, clubfoot, and developmental dysplasia of the hip. The model provides a non-invasive three-dimensional approach to study the dynamics of human movements using biomechanical parameters that are difficult or impossible to examine using physical experiments alone. Our proposed research will advance pediatric movement science and will uncover the underlying mechanisms involved in the maturation of the hip joint during early development. Results from the proposed research will: (1) Provide experimental data and computational models that can serve as the basis for developing innovative solutions for infant developmental disorders; (2) Develop innovative tools to aid clinicians, pediatricians, and physical therapists when managing joint disorders; (3) Identify factors that drive and regulate growth early in life that may have long-term benefits for prevention of early arthritis. Each of these contributions is significant given that joint disorders such as developmental dysplasia of the hip underlie around 29% of all primary hip replacements in adults.

    Categories: Faculty-Staff

  • Optimizing Countermeasures for Spaceflight-Induced Deconditioning

    PI Christine Walck

    This research focuses on understanding space deconditioning and developing comprehensive systems to mitigate the adverse physiological effects of microgravity on astronauts.

    Spaceflight-induced deconditioning presents a major challenge to human health during and after long-duration missions, contributing to muscle atrophy, bone loss, cardiovascular dysfunction, and sensorimotor impairment. This research investigates the underlying mechanisms of physiological decline in microgravity and evaluates integrated mitigation strategies using a combination of ground-based analogs (e.g., head-down tilt, LBNP), biomechanical modeling, and real-time physiological monitoring. By developing a modular countermeasure system — featuring tools like the Lower Extremity Force Acquisition System (LEFAS) and personalized exercise protocols — we aim to preserve musculoskeletal and cardiovascular integrity throughout space missions. The findings contribute to NASA’s broader efforts in preparing astronauts for lunar and Mars exploration.

    Categories: Faculty-Staff

  • Navigation and Control for Autonomous Vessels

    PI Darris White

    PI Eric Coyle

    PI Patrick Currier

    Development of closed-form solution for control of over-actuated maritime systems.

    A method for controlling the position, orientation and velocity of a marine vessel in a body of water with multiple, independently steered propulsion devices. The method involves receiving a command to move to a specific position and orientation. Utilizing position/heading feedback control, a control algorithm is used to calculate the required forces and moments to move the vehicle. Steering angles and thrust forces are determined for each of the vessel's propulsion devices. The thrust and angular displacement limits of each device are used to determine if the required forces and moments are achievable using one of three modes of operation: parallel steer, counter steer and combined parallel/counter steer. The approach fully utilizes the solution workspace for the over-actuated system without requiring the use of an optimization. The approach is used for smooth autonomous navigation in scenarios that include station keeping, path following, transitional states, disturbance rejection and object avoidance.

    Categories: Faculty-Staff

  • UAS Ground Collision Severity Evaluation

    PI Feng Zhu

    CO-I Eduardo Divo

    CO-I Victor Huayamave

    Increased use of UAS requires an in-depth understanding of the hazard severity and likelihood of UAS operations in the NAS. Due to their distinct characteristics (e.g. size, weight and shape) with manned aircraft systems, UAS operations may pose unique hazards to other aircraft and people on the ground. 

    Up to date, the studies on the UAS ground collision are still very much limited, particularly the scenario of impact between UAS and human body on the ground. Therefore, it is necessary to determine lethality thresholds for UAS using characteristic factors that affect the potential lethality of UAS in collisions with other objects, particularly human body on the ground. The objectives of this study are (1) to analyze the response and failure behavior of several typical UASs impact with human body on the ground; and (2) establish the damage threshold of UAS and its correlation with the key parameters in the crash accidents (e.g. shape, size and materials of UAS; impact energy and impulse etc.). To achieve this goal, advanced computational modeling techniques (e.g. finite element method/FEM) will be used to simulate the typical UAS/people impact scenarios.Based on the results, a design guidance can be further suggested to improve the crashworthiness of UAS and safety of personnel on the ground.

    Conventional 14 CFR system safety analyses include hazards to flight crew and occupants may not be applicable to unmanned aircraft.  It is necessary to determine the dedicated hazard severity thresholds for UAS and identify the key factors that affect the potential severity of UAS in collisions with other aircraft on the ground or in airborne encounters as well as collisions with people on the ground.  These severity thresholds will help determine acceptable corresponding system failure levels in accordance with the applicable 14 CFR requirements (for example 14 CFR 23.1309 and 14 CFR 25.1309).

    Categories: Faculty-Staff

11-14 of 14 results