Multiscale Computational and Experimental Framework to Elucidate the Biomechanics of Infant Growth
PI Victor Huayamave
There is currently a lack of biomechanical quantification of growth and development because: (1) there is no generic musculoskeletal infant model, and (2) the lack of infant data in the literature.
An infant’s spontaneous movements generate forces that are constantly acting on the joints and can affect the morphology and development of soft bone. Using experimental motion capture data, statistical shape modeling, and multi-scale musculoskeletal mechanobiological models, we will be able to predict the complex adaptation of the joint to biomechanical factors, thus providing a biomechanical basis for improved prevention and treatment of developmental disorders. This project pioneers the development of solutions that improve intervention and outcomes of conditions such as scoliosis, spina bifida, clubfoot and developmental dysplasia of the hip. The model provides a non-invasive three-dimensional approach to study the dynamics of human movements using biomechanical parameters that are difficult or impossible to examine using physical experiments alone. Our proposed research will advance pediatric movement science and will uncover the underlying mechanisms involved in the maturation of the hip joint during early development. Results from the proposed research will: (1) Provide experimental data and computational models that can serve as the basis for developing innovative solutions for infant developmental disorders; (2) Develop innovative tools to aid clinicians, pediatricians and physical therapists when managing joint disorders; (3) Identify factors that drive and regulate growth early in life that may have long-term benefits for prevention of early arthritis. Each of these contributions is significant given that joint disorders such as developmental dysplasia of the hip underlie around 29% of all primary hip replacements in adults.
Research Dates
01/01/2020