61-70 of 81 results

  • Researching How You Teach Holistic Modeling (RHYTHM)

    PI Kelsey Rodgers

    CO-I Matthew Verleger

    CO-I Lisa Davids

    "Models are a critical part of the analysis and design of engineered systems. The purpose of multiple types of models (physical, mathematical, computational, and financial) is to provide a simplified representation of reality that mimics the features of the engineered system, and that predicts the behavior of the system. This project, a collaboration between Embry-Riddle Aeronautical University, San Jose State University, and the University of Louisville, aims to improve engineering students' modeling competence. The project plans to achieve this goal by transforming first-year engineering courses to teach modeling as an engineering tool. The project will change existing course materials, pedagogy, and assessment methods across the three institutions. Each institution will implement its own specific strategy to teach mathematical, physical, computational, and financial modeling, thus providing three different approaches. By comparing student's modeling abilities across the institutions and approaches, the project aims to identify the most impactful approaches for teaching multiple modeling in introductory undergraduate engineering courses.

    The project is guided by a "holistic modeling perspective" theoretical framework, that builds on the successful "Models and Modeling Perspective" and "Computational Adaptive Expertise" frameworks. The objectives of the project are to: (1) implement, test, and refine holistic modeling environments for institutions that have flexibility in changing curriculum and for instructors that have different degrees of interest in changing their course(s); (2) implement, test, and refine methods to assess students' modeling abilities; and (3) evaluate and present the results of modeling abilities attained by students at three different universities. A unified language and discussion around modeling will be adopted in all revised courses. An assessment tool to measure students' modeling competence will be developed and implemented at each university. This work builds upon existing research in the development of more easily adaptable and adoptable modeling pedagogies and modeling languages. The following broad research question guides the research: How do students' definitional knowledge, ability to apply, and ability to create models change based on different degrees of modeling integration in the classroom?

    This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria."



    Categories: Faculty-Staff

  • CAREER: Additively Manufactured 3D Reconfigurable Antennas

    PI Eduardo Rojas

    ​The focus of this CARRER development project is on an emerging antenna fabrication technique that combines additive manufacturing (AM) and pulsed laser machining that has the potentials to fundamentally alter the existing state of the art. 

    Antennas are key components of ubiquitous wireless communication, radar, and navigation systems that affect widespread societal needs, such as aerospace systems, healthcare, and space exploration. Most of the antennas used in a variety of applications including cellular phones to unmanned aircraft systems (UAS) are based on flat planar structures or wire geometries that are developed using traditional manufacturing technique. This approach does not allow designers the opportunity to fully leverage the geometry, space, and materials available to design better performing antennas. The focus of this CARRER development project is on an emerging antenna fabrication technique that combines additive manufacturing (AM) and pulsed laser machining that has the potentials to fundamentally alter the existing state of the art. The proposed research will allow engineers to implement smaller, efficient, lighter, and reconfigurable antenna embodiments in three-dimensions (3D) for future applications with increasing complexity. The research proposed in this project is fully integrated with an education and outreach plan. The educational plan will impact the next generation of professionals by exposing high school students to hands-on activities and videos to explain basic antenna engineering concepts. The videos will be made by accomplished engineers in the engineering field to have a strong role-model-based motivational component to stimulate them to pursue STEM careers. An advanced cellular phone-based teaching tool that allows engineering undergraduate students to visualize complex 3D concepts in electromagnetics and antenna engineering is also proposed.

    The overall goal of this project is to pursue the discovery of the next generation of antennas with reconfigurable performance while conserving size, weight and cost. Research initiatives include: (a) the investigation of novel additive manufacturing processes for the fabrication of conformal 3D multiple curved antennas based on laser-enhanced direct print AM (LE-DPAM) with femtosecond laser machining and 5-axis kinematics, (b) the study of bio-inspired 3D superior antenna geometries that are not possible to manufacture using traditional methods but are conceivable using LE-DPAM, (c) the development of design methods based on a novel 3D to 2D conformal mapping technique, (d) the study of embedded material- and IC-based reconfigurability mechanisms including the use of electrically tunable inks that can be deposited on conformal surfaces, as well as IC-based switches for reconfiguration of antenna feeds and loads, and (e) the investigation of the structure-property relationships of commercially available and custom-formulated inks that provide excellent electromagnetic performance while addressing the needs for aviation and space environments.

    Categories: Faculty-Staff

  • FAA ASSURE Center of Excellence for Unmanned Aircraft Systems

    PI Richard Stansbury

    ERAU has completed or is conducting research tasks addressing the impact of maintenance induced failures on UAS safety; the function allocation of systems operations between automated systems, remote pilots, and support crew, surveillance criticality for detect, and avoid systems; impact of UAM air traffic on air traffic controllers; data analysis to determine the impact of UAS on the NAS, UAS flight data recorder requirements, etc.



    ASSURE or the Alliance of System Safety for UAS through Research Excellence is a multi-university center designated by the Federal Aviation Administration (FAA) as its Center of Excellence for Unmanned Aircraft Systems established in 2015. As a core and founding member of ASSURE, ERAU sponsorship to conduct research enabling the integration of unmanned aircraft systems (UAS), advanced air mobility (AAM), and urban air mobility (UAM) in the National Airspace System (NAS). New funding opportunities come available 1-3 times per year.

    ERAU has completed or is conducting research tasks addressing the impact of maintenance induced failures on UAS safety; the function allocation of systems operations between automated systems, remote pilots, and support crew, surveillance criticality for detect, and avoid systems; impact of UAM air traffic on air traffic controllers; data analysis to determine the impact of UAS on the NAS, UAS flight data recorder requirements, etc.

    Categories: Faculty-Staff

  • ASSURE A55

    PI Richard Stansbury

    PI Christopher Herbster

    The aviation industry uses flight data recorders (FDR) and cockpit voice recorders (CVR) to investigate accidents and incidents. FDRs record sensor data to provide information about an aircraft’s technical status, while CVRs record sounds from the cockpit to draw conclusions through crew communications and environmental sounds.

    The aviation industry uses flight data recorders (FDR) and cockpit voice recorders (CVR) to investigate accidents and incidents. FDRs record sensor data to provide information about an aircraft’s technical status, while CVRs record sounds from the cockpit to draw conclusions through crew communications and environmental sounds. The American National Standards Institute (ANSI) Unmanned Aircraft Systems Standardization Collaborative (UASSC) standardization roadmap v2.0 indicates that there are significant gaps regarding these flight recorders for UAS. Therefore, the purpose of this project is to close these gaps and define appropriate requirements for FDR and CVR for UAS in the national airspace.

    The project is divided into subtasks. The first major step is the literature review of current data recorder standards, technologies, and their requirements for UAS and UAM aircraft. The requirements of various government organizations and institutions are analyzed in this step. The next step is to examine the requirements found. Within this task, it is investigated how applicable the existing requirements are to various categories of UAS. If there are problems adapting these requirements, the corresponding standards will be adjusted. The research will especially focus on test procedures for crash survival, methods for data recording, and the minimum data required.

    Categories: Faculty-Staff

  • Mixing of a supercritical jet in a supercritical cross-flow

    PI Neil Sullivan

    CO-I Mark Ricklick

    This project is focused on the exploration and validation of numerical modeling techniques, for the simulation of supercritical jets in crossflow. 

    ​The injection of fuels and oxidizers into combustion chambers is often performed at near-critical or supercritical (SC) temperatures and pressures. At the critical point, the surface tension and enthalpy of vaporization of a fluid approach zero. This means there is no droplet formation in a jet, and also no density change between phases. The fluid has in effect only one supercritical phase, and has both liquid-like and gas-like properties. Physical and thermodynamic properties of the fluid have large gradients near the critical point, and this has led to complications in numerical simulation of even simple flow phenomena at this condition.

    It is desired to simulate the mixing and subsequent combustion of certain supercritical fluids for application to the design of SC-CO combustion power generation. SC methane and oxygen will be burned in an atmosphere of SC carbon dioxide, allowing highly efficient power extraction using smaller turbomachinery than in traditional Brayton or Rankine cycles. The study of SC methane jets also has applications to liquid rocket propellant injection and jet impingement rocket nozzle cooling.

    Reynolds-Averaged Navier Stokes (RANS) and Large Eddy Simulation (LES) numerical studies are conducted to investigate the diffusion-driven mixing of one or more species in a SC jet, with another species in a SC cross-flow. Real-gas effects will be captured using the Peng-Robinson cubic equation of state. Benchmarking is performed against previous experimental and LES studies performed on near-critical and SC jets in quiescent fluids. The commercial code STAR-CCM+ is used for the simulation.

    Improved prediction of jet behavior at near-critical and SC pressures and temperatures will better inform combustor design, combustion efficiency and thermodynamic efficiency.

    Ideal gas axisymmetric simulation of a sub-critical nitrogen jet

    Categories: Graduate

  • Secret Sharing Over a Gaussian Broadcast Channel: Optimal Coding Scheme Design and Deep Learning Approach at Short Blocklength

    PI Rumia Sultana

    ​We consider a secret sharing model where a dealer shares a secret with several participants through a Gaussian broadcast channel such that predefined subsets of participants can reconstruct the secret and all other subsets of participants cannot learn any information about the secret.

    We consider a secret sharing model where a dealer shares a secret with several participants through a Gaussian broadcast channel such that predefined subsets of participants can reconstruct the secret and all other subsets of participants cannot learn any information about the secret. Our first contribution is to show that, in the asymptotic blocklength regime, it is optimal to consider coding schemes that rely on two coding layers, namely, a reliability layer and a secrecy layer, where the reliability layer is a channel code for a compound channel without any security constraint. Our second contribution is to design such a two-layer coding scheme at short blocklength. Specifically, we design the reliability layer via an autoencoder, and implement the secrecy layer with hash functions. To evaluate the performance of our coding scheme, we evaluate the probability of error and information leakage, which is defined as the mutual information between the secret and the unauthorized sets of users channel outputs. We empirically evaluate this information leakage via a neural network-based mutual information estimator. Our simulation results demonstrate a precise control of the probability of error and leakage thanks to the two-layer coding design.

    Categories: Faculty-Staff

  • IUSE/PFE: RED Innovation: Using Scrum to Develop an Agile Department

    PI Massood Towhidnejad

    CO-I Omar Ochoa

    CO-I James Pembridge

    Efforts to implement these kinds of changes are often slowed down by department cultures or faculty attitudes about the amount of time and work that would be involved. In this project the Electrical Engineering and Computer Science (EECS) Department at Embry-Riddle Aeronautical University will implement an innovative approach to become a department that responds quickly to student and industry needs.

    The next generation of engineers will need essential technical and professional skills to solve the complex problems facing society. Changes to how departments operate, the curriculum, and teaching practices in engineering programs are required to better prepare students for the profession. Efforts to implement these kinds of changes are often slowed down by department cultures or faculty attitudes about the amount of time and work that would be involved. In this project the Electrical Engineering and Computer Science (EECS) Department at Embry-Riddle Aeronautical University will implement an innovative approach to become a department that responds quickly to student and industry needs. This approach will apply agile development methods typically used in industry to deliver the best products faster. Agile methods involve working on teams in short cycles which allow shared work responsibility, frequent feedback, and adjustments between cycles. The EECS Department will use the Scrum agile method to organize how the department carries out its normal operations. The department will also embed Scrum agile product development into courses across the curriculum. The new approach will allow faculty to achieve quicker changes and implementation of prioritized items for the department. Examples of prioritized items will include incorporating more evidence-based practices in courses such as just-in-time teaching, case-based teaching, active learning, and peer instruction; fostering inclusive learning environments; updating course materials; revising department procedures; and recruiting diverse students and faculty. Consequently, both faculty and students in the department will gain expertise with this agile professional skill. The project will investigate how the changes to department operations enhance faculty and student experiences. The findings would help inform other engineering departments about practices to improve the education of a diverse student population to be well-skilled engineers for the workforce.

    The objectives of this project will be to radically transform the EECS department into an agile department that: 1) develops students into engineers with agile skills desired by industry, and 2) develops an agile faculty culture which models the use of agile practices for students. Faculty will work collectively in Scrum teams to innovate the practices, policies, and culture of the department. Students will use Scrum in individual and team projects throughout the middle two years of the curriculum to progressively build their expertise for the culminating capstone courses in the senior year. The research study will use an explanatory case study design guided by social cognitive theory. Quantitative and qualitative analyses will be performed using data from interviews with faculty and students, feedback from stakeholders, and artifacts from Scrum teams. Research results could lead to transformations in engineering education by offering a model on the novel use of Scrum as an agile organizational practice and its influences on the collective efficacy of faculty. This project is jointly funded by the Division of Undergraduate Education and the Division of Engineering Education and Centers reflecting the alignment of this project with the respective goals of the divisions and their programs.

    Categories: Faculty-Staff

  • Developing Artifact Peer Review Assignment Methodologies to Maximize the Value of Peer Review for Students

    PI Matthew Verleger

    This engineering education research project seeks to develop a proof-of-concept peer review matching algorithm and demonstrate if it is a valuable and viable methodology for conducting peer review. Peer review is a proven method that has positive impact on student learning. The project will test the algorithm on Model Eliciting Activities in the engineering classroom, and investigate how changing peer review can affect student learning.



    The broader significance and importance of this project is the transformative potential of improving peer review processes, since peer review is used throughout STEM and medical fields. Thus this preliminary investigation can extend outside the realm of improving student learning. This project overlaps with NSF's strategic goals of transforming the frontiers through preparation of an engineering workforce with new capabilities and expertise. Additionally NSF's goal of innovating for society is enabled by supporting the development of innovative learning systems.


    Categories: Faculty-Staff

  • Platform for Investigating Concept Networks on the Instrumentality of Knowledge (PICNIK)

    PI Matthew Verleger

    This engineering education research project seeks to develop a concept network for engineering and a platform for helping students identify how concepts are connected across a curriculum.  The goal is to better understand and improve how students value the concepts being taught throughout their education.



    By data mining course materials (i.e., textbooks, course notes, syllabi, video transcripts, websites, etc.), a concept network can be developed for that course. With each additional resource, the network connectedness become more fully representative.  By mapping materials from courses throughout a curriculum, and then overlaying the resulting map on a degree plan of study, students will be able to better identify and value how concepts being taught today are connected and used throughout the rest of their education. For instructors, curricular redesign becomes significantly easier, as they will be able to more fully contextualize how other courses depend on their material.

    Categories: Faculty-Staff

  • Optimizing Countermeasures for Spaceflight-Induced Deconditioning

    PI Christine Walck

    This research focuses on understanding space deconditioning and developing comprehensive systems to mitigate the adverse physiological effects of microgravity on astronauts.

    Spaceflight-induced deconditioning presents a major challenge to human health during and after long-duration missions, contributing to muscle atrophy, bone loss, cardiovascular dysfunction, and sensorimotor impairment. This research investigates the underlying mechanisms of physiological decline in microgravity and evaluates integrated mitigation strategies using a combination of ground-based analogs (e.g., head-down tilt, LBNP), biomechanical modeling, and real-time physiological monitoring. By developing a modular countermeasure system — featuring tools like the Lower Extremity Force Acquisition System (LEFAS) and personalized exercise protocols — we aim to preserve musculoskeletal and cardiovascular integrity throughout space missions. The findings contribute to NASA’s broader efforts in preparing astronauts for lunar and Mars exploration.

    Categories: Faculty-Staff

61-70 of 81 results