1-10 of 25 results

  • Discontinuity-driven mesh adaptation method for hyperbolic conservation laws

    PI Mihhail Berezovski

    ​The proposed project is aimed at developing a highly accurate, efficient, and robust one-dimensional adaptive-mesh computational method for simulation of the propagation of discontinuities in solids. The principal part of this research is focused on the development of a new mesh adaptation technique and an accurate discontinuity tracking algorithm that will enhance the accuracy and efficiency of computations. The main idea is to combine the flexibility afforded by a dynamically moving mesh with the increased accuracy and efficiency of a discontinuity tracking algorithm, while preserving the stability of the scheme.

    ​Key features of the proposed method are accuracy and stability, which will be ensured by the ability of the adaptive technique to preserve the modified mesh as close to the original fixed one as possible. To achieve this goal, a special monitor function is introduced along with an accurate grid reallocation technique. The resulting method, while based on the thermodynamically consistent numerical algorithm for wave and front propagation formulated in terms of excess quantities, incorporates special numerical techniques for an accurate and efficient interface tracking, and a dynamic grid reconstruction function. The numerical results using this method will be compared with results of phase-transition front propagation in solids and densification front propagation in metal foam obtained by applying the fixed-mesh method be used to justify the effectiveness and correctness of the proposed framework. This project will contribute significantly towards the development of corresponding methods in higher dimensions including dynamic crack propagation problems. Development of modern high-resolution finite-volume methods for propagation of discontinuities in solids, as well as of supplementary techniques, is essential for a broad class of problems arising in today's science. The broader impact of this project also includes educational purposes. The method used in this project will be incorporated into future projects for computational mathematics major students who will gain an experience in the state-of-the-art computational science.

    Tags: computational mathematics daytona beach campus mathematics

    Categories: Faculty-Staff

  • STEM Literacy and Service-Learning

    PI Sally Blomstrom

    This service-learning project investigates STEM literacy and involves students in sections of Speech (COM 219). Students create an audio tour about a specimen from the A. Jewell Schock Natural History Museum. The audio tour includes the specimen’s scientific name, a description of its biology, its habitat, its diet, and the forces of flight related to the specimen as well as its biomechanics.

    They will be instructed to develop content which includes descriptive information about the biology of the specimen (science), the biomechanics used (engineering), dimensions of the specimen and its rate of speed (math). They will use technology in the process of creating and sending the audio files, and the museum will use technology to make the files available to visitors of the museum, both online and in person (technology). The goal is to have students engage in research on a STEM topic and then communicate their knowledge to a general audience using technology. We are investigating if, and to what extent, the project increases STEM literacy which is defined as a demonstrated ability to read STEM text, tables, and graphics with understanding, to evaluate the quality of the read information, to identify relevant information and incorporate that information in written or oral communication.

    Tags: daytona beach campus pedagogical ctle humanities and communication

    Categories: Faculty-Staff

  • Exploring vulnerabilities, threats, and exploits in small unmanned aerial systems (sUAS)

    PI John Craiger

    Small unmanned aerial systems (sUAS), also known as drones, have been called flying computers given the overlap in their technologies. The purpose of this research is to conduct cybersecurity vulnerability assessments of several sUAS to identify vulnerabilities, threats, and associated exploits to the sUAS. Cyber vulnerabilities could theoretically allow a bad actor to take control of the sUAS, cause it to malfunction while in flight, and more. 



    The Federal Aviation Administration (FAA) predicts that purchases of hobbyist small unmanned aerial systems (sUAS) will grow from 1.9 million in 2016 to 4.3 million by 2020, and commercial sUAS to increase from 600,000 in 2016 to 2.7 million by 2020. sUAS, often referred to as ‘drones,’ are comprised of aeronautical hardware, a CPU, RAM, onboard storage, radio frequency communications, sensors, a camera, and a controller used by the pilot-in-command.  Some have argued that a sUAS is essentially a flying computer.  As such, sUAS may be susceptible to many of the types of attacks that are often used on personal computers attached to a computer network.  Potential attacks on sUAS include de-authentication (i.e., ‘terminating’ the sUAS from the network); GPS spoofing (e.g., modifying or faking GPS coordinates); unauthorized access to the computer flight systems and onboard storage; jamming the communications channel (resulting in the possible loss of the sUAS); and contaminating the sUAS geofencing mechanism (allowing the sUAS to fly in a ‘no-fly-zone’). The result of these types of attacks include theft of the sUAS; flying the sUAS into sensitive/off- limits areas; purposefully crashing the sUAS to cause damage to persons or equipment (including airplanes, crowds, etc.); and theft or adulteration of sensitive data (e.g., law enforcement surveillance data).

    The purpose of this research is to identify potential threats, vulnerabilities, and exploits for a subset of consumer/hobby sUAS that were included in the 2016 ERAU sUAS Consumer Guide. The research will apply a threat modeling approach to identify cyber-based vulnerabilities; potential attack vectors; commercial-off-the-shelf and “home-built” equipment required to effectuate attacks; cyber and kinetic ramifications of attacks; and mitigating strategies for protecting sUAS from cyber-attacks.  Vulnerability assessments are to be conducted via network scanning tools to identify open network ports, vulnerability scanners that identify system vulnerabilities, and tools used for the associated exploitation of these vulnerabilities.  The exploitation (i.e., attack) architecture will use an attack proxy consisting of a Raspberry PI running Kali Linux OS, and specifically outfitted with multiple network interface cards, allowing the proxy to capture and manipulate network traffic in either managed or monitor (i.e., active vs. passive) mode.  Given that most personal computers are known to suffer from various cyber vulnerabilities, and many of the components and software are the same as used in personal computers, we expect to observe the same for the sUAS. 

    Identifying threats and vulnerabilities has two purposes, one defensive, and one offensive.  From the defensive side, manufacturers, and even users, should be aware of potential threats.  Manufacturers should be aware that the design and component decisions can effect the cybersecurity of the sUAS.  From the offensive side, sUAS pilots are known to fly them for nefarious purposes, including flying into no-fly zones, violating the privacy of individuals using attached high-definition cameras, etc.  Indeed, a new and growing industry involves developing anti-drone techniques to protect against rogue sUAS and their pilots.  

    Tags: cybersecurity small unmanned aerial systems drones cybersecurity threats cybersecurity vulnerabiliites

    Categories: Faculty-Staff

  • Resolving Physical Conditions of Diffuse Ionized Gas throughout the Milky Way-Magellanic System

    PI Lawrence Haffner

    CO-I Edwin Mierkiewicz

    We use a dedicated, sensitive spectroscopic facility in Chile, the Wisconsin H-Alpha Mapper (WHAM), to study the physical conditions of the diffuse ionized gas (DIG) in the Milky Way and Magellanic System.

    WHAM can reveal emission nearly a 100-million times fainter than the Orion Nebula, making it unsurpassed for collecting high-resolution, optical-line spectra from faint, diffuse sources. Here, we embark on a diverse observational program using multiple optical emission lines with this powerful, remotely-controlled, Fabry-Perot instrument to substantially advance our understanding of interstellar matter and processes that shape it. In previous work, we released the first spectral survey of the Galaxy's DIG with observations of the Balmer-alpha optical emission line of hydrogen. This effort, the WHAM Sky Survey (WHAM-SS), complements neutral gas surveys of the 21-cm radio emission line. The WHAM-SS reveals ionized gas that can be seen in every direction from our location inside the Galaxy and offers a comprehensive view of the distribution and dynamics of the Milky Way's ionized gas. Using different instrument configurations, we are now surveying the southern sky in other emission lines, allowing us to measure physical conditions within the same ionized component.

    NSF AST-2009276

    Tags: Astronomy Astrophysics Milky Way

    Categories: Faculty-Staff

  • Meta-Analyses of the Effects of Standardized Handoff Protocols on Patient, Provider, and Organizational Outcomes

    PI Joseph Keebler

    CO-I Elizabeth Lazzara

    This meta-analysis attempts to understand the benefits of a structured communication process on patient, provider, and organizational outcomes. Studies have found that one of the most crucial points during a patient’s hospital stay is the transition of care between one or more providers, often referred to as a patient handoff. These brief interactions between providers are often especially vulnerable to communication breakdowns due to interruptions, omission of pertinent information by the sender or receiver of the information. To illustrate, upwards of 80% of severe, preventable medical errors have been attributed to miscommunication during handoffs. In other words, failures in communication during handoff are potentially responsible for the loss of hundreds of thousands of lives every year in the United States.

    Standardized protocols – usually in the form of a short mnemonic (e.g. SBAR – situation, background, assessment, recommendation) or a longer multi-item checklist - have been required by the Joint Commission, but meta-analytic integration of handoff protocol research has not been conducted. Meta-analysis is a statistical technique that quantitatively assesses effects across multiple studies, providing a summary of the current state of the science. The overall purpose of this study was to understand the effects of handoff protocols using meta-analytic approaches. Handoff information passed during transitions of care, patient outcomes, provider outcomes, and organizational outcomes are the primary outcomes studied for this research.

    Initially 4,556 articles were identified across a multitude of literature databases, with 4,520 removed. This process left a final set of 36 articles, all which included pre-/postintervention designs implemented in live clinical/hospital settings. Meta-analyses were conducted on 34,527 pre- and 30,072 postintervention data points.

    Results indicate positive effects on all four outcomes: handoff information, patient outcomes, provider outcomes, and organizational outcomes. We found protocols to be effective, but there is significant publication bias and heterogeneity in the literature. Publication bias indicates that only studies with significant findings are being published, while heterogeneity indicates that studies are not being conducted the same way – usually lacking standardized metrics. These results demonstrate that handoff protocols tend to improve results on multiple levels, including handoff information passed and patient, provider, and organizational outcomes. Significant effects were found for protocols across provider types, regardless of expertise or area of clinical focus. It also appears that more thorough protocols lead to more information being passed, especially when those protocols consist of 12 or more items. This research has continued to this day, with a recent dissertation (Kristen Welsh-Webster) completed i in 2017 on implementation of handoffs in a live anesthesia unit. Keebler and Lazzara’s team are currently writing multiple grants in collaboration with local and national hospital systems to improve their handoffs and team processes surrounding care transitions. 

    Tags: Teamwork human factors

    Categories: Faculty-Staff

  • Understanding Factors that Influence Anesthesia Handoffs

    PI Elizabeth Lazzara

    CO-I Joseph Keebler

    Communication is an essential aspect of quality patient care in modern medicine, yet mishaps in communication during handoffs (i.e., the transition of a patient between two or more providers) happen frequently. The purpose of this project was to understand the factors that influence handoffs between anesthesia providers and clinicians within the post anesthesia care unit. 

    Handoffs are ubiquitous in hospital settings and frequently occur before and after surgery (i.e. the perioperative setting). Because patient care in the perioperative setting is contingent upon communication between providers, it is important the handoff between surgical and post-surgical units occurs efficiently and efficaciously to ensure relevant patient information is being transferred. To ameliorate errors associated with handoffs, there is a national call for standardization (i.e., protocols). Although there has been progress in this domain, handoff research remains problematic. Protocols are often developed unscientifically, research methods lack rigor, and studies rarely compare protocols against one another. Additionally, many studies do not focus on contextual variables (e.g., noise or turn taking) or individual differences that could influence handoff efficiency.

    To address this gap, this study utilized qualitative and quantitative methods to develop an innovative, customized, data-driven handoff protocol, implemented the protocol into a live perioperative setting, and evaluated it in comparison to the previously established handoff protocol, SBAR (Situation, Background, Assessment, and Recommendation).

    We designed the handoff protocol using literature from the medical field, interviews, and a card sorting technique (a method to determine how experts organize their knowledge). Based on this data, we generated a protocol (i.e., Flex 12) and corresponding learning/training materials. We trained participants on Flex 12 using information- and practice-based strategies as well as feedback. More specifically, participants listened to a lecture on handoffs, had the opportunity to perform handoffs, and received feedback regarding their performance of those handoffs. To determine its effectiveness, the Flex 12 was tested using a pre-post within-subjects design, which means that all participants were measured before and after the Flex 12 was implemented.

    Although handoff protocol was not significant with regards to handoff efficiency, noise and turn taking was significant. In other words, handoffs were less efficient when there was more noise from equipment or staff and when providers had more turns during their conversation. Finally, the use of the protocol impacted provider’s attitudes and cognitions. For example, providers perceived less authority between one another when the protocol was used.


    Despite being a small study at one site, it does present evidence that other contextual factors should be considered to better understand handoffs. Factors, such as noise and turn-taking, do influence handoff outcomes (i.e., handoff efficiency). Considering the time demands placed on healthcare providers, it is critical to understand and maximize efficiency while maintaining safety.

    Tags: human factors Teamwork

    Categories: Faculty-Staff

  • Collaborative Research: Instabilities and Turbulence in Gravity Wave Dissipation and Formation of Thermospheric Sodium Layers above the Andes

    PI Alan Liu



    This award will fund continued operations of a sodium (Na) wind-temperature (W&T) lidar at the Andes Lidar Observatory (ALO) in Cerro Pachon, Chile (30.25 S, 70.74 W, elev. 2530 m) supporting scientific studies aimed at the dynamics of mesopause atmospheric instabilities and turbulence structures formation resulting from the gravity wave (GW) dissipation processes for a spatial region above the Andes where the population of mountain GW events is abundant. The Na lidar at ALO is a state-of-the-art resonance-fluorescence Doppler lidar, capable of measuring 3D wind, neutral temperature and Na density profiles with excellent vertical and temporal resolutions within the 80-105 km altitude range (referred to as the MLT region) and with high accuracy. Other possible W&T lidar studies would include the extension of lidar observations into the lower thermosphere, with wind and temperature measurements up to 140 km altitude for the somewhat frequent occurrence of thermospheric sodium layers. The formation of such layers is not understood and will be a significant topic of research in this award. Another interesting application of the ALO observatory is the detection of turbulence scale perturbations in the mesosphere and lower thermosphere temperature and wind profiles that are related to the formation of atmospheric unstable layers and dissipation of GW events.

    Categories: Faculty-Staff

  • MRI: Acquisition of A Meteor Radar for the Andes Lidar Observatory

    PI Alan Liu



    ​This MRI award would acquire a state-of-the-art meteor radar (MR) system that would replace an aging meteor radar located at the Andes Lidar Observatory (ALO), located in Cerro Pachon, Chile (30.26 S, 70.74 W, elev. 2530 m). This clear sky location is ideally situated for making observations of the highly dynamical environment associated with the mountain waves generated by the surface winds blowing over the Andes. This location is also well suited for detecting sodium particles transported to high altitude by the Appleton fountain effect that operates near the geomagnetic equator. Both of these mechanisms make the Andes dynamical environment a "hot spot" that is unique in the world with nothing equivalent available for study in the United States. ALO is an upper atmosphere observatory that supports optical remote sensing instruments, including a wind/temperature (W&T) lidar operating at the sodium wavelength (589 nm) and several airglow instruments. The lidar system measures simultaneously nighttime atmospheric wave perturbations (associated with gravity waves) of temperature, wind and airglow intensities in the mesosphere and lower thermosphere (MLT) region (80-105 km) at high vertical spatial (<1 km) and temporal resolutions (~1 min) during the low moon period of each month. The MR data provides measurements of the background tidal winds that allow the determination of the intrinsic phase speeds needed for studying gravity wave propagation physics. These results taken together are aimed at achieving a detailed study of atmospheric waves and turbulence structures through modeling comparisons of data with turbulent structure morphology. This project will support engineering undergraduate students at ERAU thus helping to extend the STEM undergraduate education effort at ERAU into the remote sensing area. One graduate and one undergraduate student would be directly involved in this project. Moreover, these applications made possible by the enhanced quality of the MR data would provide new opportunities for graduate student training in the radar remote sensing technology as well as having these students undertake studies regarding new questions in upper atmosphere research. Students involved will learn the principles of the MR remote sensing technique through the use of formal lectures and informal hands-on interactions. Activities involving the graduate student are site radar noise survey, the process of radar installation and subsequent hardware maintenance. The student would also be responsible for data retrieval, validation and archival processing. The undergraduate student would help set up the Madrigal server and update the ERAU website concerning the meteor radar status. These activities will provide training to these students on how to become an experimental scientist. The MR would also support undergraduate and graduate education at ERAU as the department offers an undergraduate course in Space Physics, one MS level course Experimental Methods in Space Science, and two PhD level courses Upper Atmosphere Physics and Remote Sensing: Active and Passive. Students will learn advanced techniques involved in MR and use the MR data for various course projects. Students can design their own software for meteor identification, wind and temperature retrieval. 

    The MR measures horizontal wind continuously (day and night) in the same altitude region as the height range observed by the lidar with ~2 km vertical and 1 hr resolutions. It complements the optical lidar measurements by providing background tidal wind information that is critical for deriving gravity wave (GW) intrinsic parameters and understanding the phenomenology of GW wave propagation with regard to reflection, ducting, and dissipation processes. The MR capability for continuous wind measurement is essential for resolving longer time scale oscillations such as atmospheric tides and planetary waves, and for the study of their interactions with small-scale waves. The new MR will not only continue the MR wind measurement series but also provides new capabilities to infer temperature, turbulence diffusion coefficient, and the diurnal variation of GW momentum flux.

    Categories: Faculty-Staff

  • Collaborative Research: DASI Track 2--A Distributed Meteor Radar and Optical Network in South America

    PI Alan Liu

    This project will establish a distributed network of meteor radars and optical instruments in the mid-latitudes of South America, providing continuous measurements of upper atmospheric winds and nighttime wave perturbations in the mesosphere and thermosphere.



    This project will establish a distributed network of meteor radars and optical instruments in the mid-latitudes of South America, providing continuous measurements of upper atmospheric winds and nighttime wave perturbations in the mesosphere and thermosphere. This network will be able to make multi-point observations to resolve detailed four-dimensional (spatial and temporal) structures of small-scale (tens to hundreds km) waves. These small-scale waves are known to be a key player in driving variabilities at all spatial and temporal scales in this region and this network will provide a much-needed dataset for investigations of these waves and their impacts. The project will provide opportunities to a postdoctoral researcher and Ph.D. students to gain real world experience in working at remote areas to conduct engineering and research work. The project will also promote strong international collaboration with scientists from the United States, Germany, Chile, and Argentina, and will strengthen the ground-based network of instruments for geospace observations in South America.

    This network will be built upon two NSF-funded projects to fully leverage the existing infrastructure and expertise that are already developed through NSF?s investments: a Major Research Instrumentation project that supported the deployment of a multi-static meteor radar (MR) system in northern Chile; and an NSF Distributed Array of Small Instruments project MANGO (Midlatitude Allsky-imaging Network for GeoSpace Observations) that established a network across the continental United States with multiple all-sky imagers and Fabry-Perot Interferometers (FPIs). This project will expand the MR system by adding two additional receiver stations, establish an optical network with airglow imagers and an FPI and a data infrastructure to promptly retrieve and share all data products, based on instruments and software developed in MANGO.

    This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

    Please report errors in award information by writing to: awardsearch@nsf.gov.

    Categories: Faculty-Staff

  • REU Site: Exploring Aerospace Research at the Intersection of Mechanics, Materials Science, and Aerospace Physiology

    PI Foram Madiyar

    CO-I Alberto Mello

    This Project is founded by National Science Foundation, under REU site. This project aims to educate students and promote scientific research in materials and aerospace science that encompasses not only building lighter and smarter materials for aerospace applications but also understanding the impact of the space environment on physiological and biological changes.

    This Site will focus on multidisciplinary research in aerospace engineering, chemistry, and applied space biology with a goal of improving future space materials science and human diagnostic technology by exposing students to the challenges in these areas and the research going on to solve them. Undergraduate students for a ten-week summer will be recruited for the program. The student recruitment will start in Nov 2021 and the first summer research will be held in the period of May 16 to July 18, 2022.

    The ERAU-REU program is dedicated to the ideals of diversity, equity, accessibility, and inclusion and we ensure a safe and comfortable environment for all scholars.  Please contact us if you have any questions or concerns about the housing accommodations or other aspects of the program.

    Students from underrepresented groups in the sciences, veterans, disabled, or are early in their undergraduate coursework (rising sophomores or juniors) are especially encouraged to apply.


    Research Areas:

    1 - Additive Manufacturing of Shape-Stabilized Phase-Change Materials (PCMs)

    Mentor: Prof. Sandra Boetcher (https://faculty.erau.edu/Sandra.Boetcher)

    The goal of the proposed research is to manufacture shape-stabilized PCMs via additive manufacturing.

    2 - Space Radiation: Study of Intracellular Reactive Oxygen Species

    Mentor: Prof. Hugo Castillo (https://faculty.erau.edu/Hugo.Castillo)

    The goal of this project is to produce a standardized technique to measure the intracellular concentration of ROS in different species of bacteria and yeast, in relation to chronic exposure to sub-lethal doses of ionizing radiation using a low-dose gamma irradiator allowing to quantify the oxidative stress status of the cell concerning DNA damage.

    3 - Investigating Micro- and Nano-Plastics in the Confined Environment of Space Flight.

    Mentor: Prof. Marwa El-Sayed (https://faculty.erau.edu/Marwa.ElSayed)

    The proposed study aims to characterize atmospheric MNP in indoor environments. The goals of the study are 1) identification of the sizes, shapes and size distribution of MNP in the atmosphere, 2) characterization of the chemical composition of atmospheric MNP, 3) determination of the degradation processes and 4) identification of the health issues associated with these particles.

    4 - Investigation of Space Biomechanics and Additive Manufacturing of the Orthopedics

    Mentor: Prof. Victor Huayamave (https://faculty.erau.edu/Victor.Huayamave)

    The participants will learn about (1) current state of space biomechanics research, (2) segmenting anatomical images to develop finite element models, and (3) 3D printed components using additive manufacturing. The computational pipeline will be introduced to the predictive power of the FEM to assess the structural integrity of the hip joint under microgravity conditions.

    5 - Fabrication of a Flexible, Stretchable, and Self-Healable Platform for Aerospace Applications

    Mentors: Prof. Foram Madiyar, Prof. Daewon Kim (https://faculty.erau.edu/Foram.Madiyar, https://faculty.erau.edu/DaeWon.Kim)

    The goal of this project is to investigate the use of polymers not only having tunable electrical and thermal properties, but also reversible bond chemistry that imparts materials high stretchability, exceptional toughness, and self-healability.

    6 - On-Site Biomarker Sensing using Flexible Transistors on Skin

    Mentor: Prof. Foram Madiyar (https://faculty.erau.edu/Foram.Madiyar)

    The goal of the project is to design a wearable technology for the real-time screening, diagnosis and multiplex detection of different biomarkers.

    7 - Biofidelic Piezoresistive Nanocomposite Multiscale Analysis

    Mentor: Prof. Sirish Namilae (https://faculty.erau.edu/Sirish.Namilae)

    In the proposed research, we will further engineer the electro-mechanical response of the structure through (a) varying the constituents in the silicone matrix and (b) engineering the interface mechanical properties in the core layer.

    8 – Fractography using Scanning Electron Microscopy

    Prof. Alberto Mello (https://faculty.erau.edu/Alberto.Mello)

    This research aims to cover scanning electron microscope (SEM) operation, including energy dispersive spectroscopy (EDS) and stress analysis. The student will cut and prepare fractured specimens, observe the crack surface under SEM to identify the local pit formation at the plate edge, find the point of crack initiation, and determine the propagation path.

    9 - Investigation of Photoresponsive and Thermally Stable Monomeric Structures for Space Applications

    Mentor Prof. Javier Santos (https://faculty.erau.edu/Javier.SantosPerez)

    The goal of the project is to investigate the photoresponsive and thermally stable monomeric structures to sense damage, fractures, and changes to space infrastructures.

    10 - Investigating Methods to Minimize the Gap between Pre and Post-Space Flight Syndrome

    Mentor: Prof. Christine Walck (https://faculty.erau.edu/Christine.Walck)

    We propose to design an optimized lower extremity force acquisition system (LEFAS) that integrates with a lower-body negative pressure (LBNP) box and subject-specific protocols for improved fitness results by taking a computationally simulated optimization approach. 

    Tags: Education Scientific Research Aerospace Engineering Chemistry Space Biology Aerospace Materials

    Categories: Faculty-Staff

1-10 of 25 results