11-20 of 25 results
-
Measuring Interstellar Temperature and Ionization Variations Using Observations of Faint Diffuse [OII] Emission
PI Edwin Mierkiewicz
The interstellar medium (ISM) plays a vital role in the ongoing cycle of stellar birth and death as well as galactic evolution. However the role of interstellar matter, from how its properties are influenced by stars to how, in turn, its properties influence star formation is poorly understood.
Read moreCategories: Faculty-Staff
-
High Spectral Resolution Observations of Lunar Exospheric Emissions
PI Edwin Mierkiewicz
We are employing high-resolution Fabry-Perot spectroscopy of neutral sodium and potassium emission to investigate the morphology and dynamics of the lunar sodium exosphere. Likely atmosphere source mechanisms are thermal desorption, photo-desorption, ion sputtering, and meteoric impact ablation.
Read moreCategories: Faculty-Staff
-
Collaborative Research: Wideband Multi-Beam Antenna Arrays: Low-Complexity Algorithms and Analog-CMOS Implementations
PI Sirani Mututhanthrige Perera
PI Arjuna Habarakada Madanayake
PI Soumyajit Mandal
Explosion of millimeter-wave (mm-wave) bandwidth opens up applications in 5G wireless systems spanning communications, localization, imaging, and radar. This project addresses challenges in mathematics, engineering, and science in developing efficient wideband beamformers based on sparse factorizations of the matrix called-delay Vandermonde matrices (DVM). The proposed highly integrated approach is attractive for mobile applications including 5G smart devices, the internet of things, mobile robotics, unmanned aerial vehicles, and other emerging applications focused on mm-waves.
Read moreCategories: Faculty-Staff
-
Cross-Scale Wave Coupling Processes in Kelvin-Helmholtz Structures
PI Heidi Nykyri
Project investigates cross-scale wave coupling processes and their role on ion heating, mixing and diffusion.
Read moreCategories: Faculty-Staff
-
Experimental Identification of Plasma Wave Modes in Vicinity of KH Vortices and in Plasma ’Mixing’ Regions in Low Latitude Boundary Layer (Ion scales)
PI Heidi Nykyri
Project uses Cluster spacecraft data to identify ion-scale waves within Kelvin-Helmholtz waves.
Read moreCategories: Faculty-Staff
-
Statistical correlation study between solar wind, magnetosheath and plasma sheet properties
PI Heidi Nykyri
CO-I Xuanye Ma
Statistical study of the solar wind, magnetosheath, and magnetospheric plasma properties usinng 8+ years of THEMIS data.
Read moreCategories: Faculty-Staff
-
NSF Career Award: Effects of Magnetosheath properties on the dynamics and plasma transport produced by the Kelvin-Helmholtz Instability and on the Plasma Sheet Anisotropies
PI Heidi Nykyri
Project investigates impact of magnetosheath properties on Kelvin-Helmholtz instability
Read moreCategories: Faculty-Staff
-
Turbulence and Structure in the Magnetospheric Cusps: Cluster spacecraft observations
PI Heidi Nykyri
Project analyzes the structure, origin of fluctuations and high-energy particles in the high-altitude cusp regions
Read moreCategories: Faculty-Staff
-
Magnetospheric Multi-Scale (MMS) Observations and simulations of high-energy electrons in the dayside magnetosheath
PI Heidi Nykyri
CO-I Brandon Burkholder
CO-I Xuanye Ma
The key objective of this study is to better understand the source and cause of high-energy electrons observed by the MMS in the dayside magnetosheath.
Read moreCategories: Faculty-Staff
-
Science and engineering proof of concept study for the Next generation Space Weather Prediction mission and space weather model development
PI Heidi Nykyri
Project analyzes astrodynamics (transfer trajectories) and spacecraft constellation stability about all Lagrange points for Mercury, Venus, Earth, Mars system for the "next generation" space weather prediction mission, and develops a solar wind model which will use data from this mission
Read moreCategories: Faculty-Staff
11-20 of 25 results