1-10 of 19 results

  • Development of a Safety Performance Decision-Making Tool for Flight Training Organization

    PI Marisa Aguiar

    CO-I Carolina Anderson

    Title 14 of the Code of Federal Regulations (CFR) Part 141 flight training organizations are actively pursuing ways to increase operational safety by introducing advanced risk assessment and decision-making techniques. The purpose of the dissertation was to create and validate a safety performance decision-making tool to transform a reactive safety model into a predictive, safety performance decision-making tool, specific to large, collegiate Title 14 CFR Part 141 flight training organizations, to increase safety and aid in operational decision-making. The validated safety decision-making tool uses what-if scenarios to assess how changes to the controllable input variables impact the overall level of operational risk within an organization’s flight department.


    Read more

    Tags: Ph.D. in Aviation Program dissertation SPI Safety Performance Indicators flight safety

    Categories: Graduate

  • Organizational Design of Secondary Aviation/Aerospace/Engineering Career Education Programs

    PI Susan Archer

    CO-I David Esser

    Modern nations operate within a global economy, relying heavily on the aviation industry for efficient and effective transportation of passengers and goods. The Boeing 2018 Pilot and Technical Outlook Report indicated that over the next 20 years, the aviation industry will need almost two and a half million new aircrew and maintenance employees to meet anticipated global demand. The industry will also need engineers, aviation managers, and workers in other aviation and aerospace disciplines. Aviation and aerospace jobs require solid backgrounds in mathematics, science, and technology; the development of pre-college aviation / aerospace / engineering career education programs would presumably enhance student preparation in these areas and increase the workforce pipeline for the industry. The goal of this study was to identify and evaluate the underlying organizational factors of successful secondary aviation / aerospace / engineering career education programs, through application of measures traditionally associated with organizational theory.


    Read more

    Tags: Ph.D. in Aviation Program dissertation organizational theory aviation education

    Categories: Graduate

  • Predicting General Aviation Accidents Using Machine Learning Algorithms

    PI Bradley Baugh

    CO-I Bruce Conway

    Aviation safety management is implemented through reactive, proactive, and predictive methodologies. Unlike reactive and proactive safety, predictive safety can predict the next accident and enable prevention before an actual occurrence. The study outlined here promotes predictive safety management through machine learning technologies using large amounts of data to facilitate predictive modeling.


    Read more

    Tags: Ph.D. in Aviation Program dissertation general aviation accidents flight safety prediction modeling

    Categories: Graduate

  • Gold Standards Training and Evaluator Calibration of Pilot School Check Instructors

    PI Paul Cairns

    CO-I Andrew Dattel

    ​A key component of air carrier advanced qualification programs is the calibration and training of instructors and evaluators and assurance of reliable and valid data in support of such programs. A significant amount of research is available concerning the calibration of air carrier evaluators, but no research exists regarding the calibration of pilot school check instructors. This study was designed to determine if pilot school check instructors can be calibrated against a gold standard to perform reliable and accurate evaluations.
    Read more

    Tags: flight training cognitive learning domain experiment pilots

    Categories: Graduate

  • Examining Unstable Approach Predictors Using Flight Data Monitoring Information

    PI David Carroll

    CO-I David Esser

    The approach and landing phase of flight is statistically the most dangerous part of flying. While it only accounts for 4% of flight time, it represents 49% of commercial jet mishaps. One key to mitigating the risks involved in this flight segment is the stabilized approach. A stabilized approach requires meeting rigorous standards for many flight parameters as the aircraft nears landing. Exceeding any of these parameters results in an unstable approach (UA). The energy management (EM) accomplished by the flight crew, represented by the EM variables in the study, influences the execution of a stabilized approach.


    Read more

    Tags: Ph.D. in Aviation Program dissertation unstable approach Flight Data Monitoring emergency management

    Categories: Graduate

  • Cost Optimization Modeling for Airport Capacity Expansion Problems in Metropolitan Areas

    PI Woo Jin Choi

    CO-I Dothang Truong

    The purpose of this research was to develop a cost optimization model to identify an optimal solution to expand airport capacity in metropolitan areas in consideration of demand uncertainties. The study first analyzed four airport capacity expansion cases from different regions of the world to identify possible solutions to expand airport capacity and key cost functions which are highly related to airport capacity problems. Using mixedinteger nonlinear programming (MINLP), a deterministic optimization model was developed with the inclusion of six cost functions: capital cost, operation cost, delay cost, noise cost, operation readiness, and airport transfer (ORAT) cost, and passenger access cost. These six cost functions can be used to consider a possible trade-off between airport capacity and congestion and address multiple stakeholders’ cost concerns.


    Read more

    Tags: Ph.D. in Aviation Program dissertation cost optimization modeling Monte Carlo simulation airport

    Categories: Graduate

  • A Comparison Of Safety Management Systems Training Methods At A Collegiate Flight Training Institution

    PI Mackenzie Dickson

    The purpose of this thesis was to compare how two different types of Safety Management Systems (SMS) training affect SMS knowledge in instructors and students in a university flight program. Additionally, the research sought to determine whether a correlation exists between safety knowledge and safety culture perception. An experimental research design was used to study two independent variables, training method and person type, and their effect of SMS knowledge. A non-experimental design was used to study the correlation between safety knowledge and safety culture perception. Research has shown that a safety-training program’s engagement level has an effect on the safety knowledge retained by trainees. This study sought to determine if higher-engagement, live- presentation training is a better approach to SMS training than a computer-based training module currently in use by the university studied. The results of this study can provide the university with useful guidance in constructing its SMS training program, an essential element to an effective SMS. Additionally, this study can demonstrate the importance of safety training in establishing positive perceptions of the university’s safety culture among students and instructors. 


    Read more

    Tags: SMS fllight safety training

    Categories: Graduate

  • Student Engagement in Aviation MOOCs: Identifying Subgroups and Their Differences

    PI Jennifer Edwards

    CO-I Mark Friend

    ​The purpose of this study was to expand the current understanding of learner engagement in aviation-related Massive Open Online Courses (MOOCs) through cluster analysis. 
    Read more

    Tags: Ph.D. in Aviation Program dissertation MOOCs learner engagement

    Categories: Graduate

  • Determinants of Aviation Students’ Intentions to Use Virtual Reality for Flight Training

    PI Stephanie Fussell, Ph.D.

    CO-I Dothang Truong

    The goal of this research was to determine the factors that influence aviation students’ intention to use VR for flight training. An extended Technology Acceptance Model (TAM) was developed that incorporates elements of the Theory of Planned Behavior (TPB); factors derived from relevant, validated extended TAMs; and new factors that are theorized to impact use intention. These factors are related to aviation education, the use of VR technology in training environments, and using VR for flight training. The new model may explain flight students’ acceptance of VR for flight training as well as their intent to use the technology. A quantitative research method with a cross-sectional survey design was utilized. Descriptive statistical analysis, a confirmatory factor analysis (CFA), and a structural equation modeling (SEM) process were employed. Data were collected from aviation students enrolled in FAA-approved Part 141 pilot schools in early 2020 using a survey design. Results indicated a good model fit to answer the three research questions of the study. There were 14 hypotheses in the original model. Although one was removed, an additional relationship was discovered, validated, and added to the model. Nine of the hypotheses were supported. Eight of the nine predictor factors of the model were determined to directly or indirectly impact behavioral intention (BI). The original TAM factors had the strongest relationships. Relationships between factors particularly relevant to VR technology and aviation training were also supported.
    Read more

    Tags: Virtual reality flight training technology acceptance model structural equation model survey training technology flight

    Categories: Graduate

  • An Exploratory Study of General Aviation Visual to Instrument Meteorological Condition Contextual Factors

    PI James Hartman

    CO-I Mark Friend

    The purpose of this dissertation was to bridge the existing literature gap of outdated contextual factor (CF) research through examination and determination of current General Aviation (GA) Title 14 Code of Federal Regulations (CFR) Part 91 visual flight rules (VFR)-into-instrument meteorological condition (IMC) contextual factors. Contextual factors are a multifaceted arrangement of pertinent events or occurrences contributing to pilot accidents in weather-related decision-making errors. 
    Read more

    Tags: Ph.D. in Aviation Program dissertation general aviation VFR visual flight rules IMC instrument meterological conditions VFR-into-IMC accidents

    Categories: Graduate

1-10 of 19 results